WATER MANAGEMENT SCHOOL

1° International Training Course

URBAN WATER RESOURCES MANAGEMENT for AFRICA Rome, Link Campus University 22 January – 3 February 2018

Wastewater reuse

Liliana Cortellini

Summary

- Why water reuse
- Benefits of wastewater reuse
- Health and environmental risks of water reuse
- Possible approaches to minimize the risks
- Italian regulation to water reuse to minimize the risks
- Case studies of water reuse
- Activities at EU level
- The WHO risk management approach

Water scarcity at global scale Source: Unesco 2017

Figure 2 Number of months per year in which the volume of surface water and groundwater that is withdrawn and not returned exceeds 1.0 at 30 x 30 arc min resolution (1996–2005)*

t *Quarterly averaged monthly blue water scarcity at 30 × 30 arc min resolution. Water scarcity at the grid cell level is defined as the ratio of the blue water footprint within the grid cell to the sum of the blue water generated within the cell and the blue water inflow from upstream cells. Period: 1996–2005.

Source: Mekonnen and Hoekstra (2016, Fig. 3, p. 3).

Water withdrawals to availability ratio Source: WWAP, 2015

Note: Water stress measures the amount of pressure put on water resources and aquatic ecosystems by the users of these resources (households, industries, and agriculture) and can easily be compared across river basins. For calculating today's water stress, the withdrawals-to-availability ratio is used (w.t.a.). This indicator has the advantage of being transparent and computable for all river basins and has been used in several studies (e.g. Alcamo et al. 2007). The larger the volume of water withdrawn, used, and discharged back into a river, the more river flow is depleted and/or degraded for users downstream, and thus the higher the water stress. Water withdrawals and availability were computed by WaterGAP3 model on 5x5 arc minute grid cells and aggregated to river basin scale.

High water stress occurs in most of India, Northern China, Middle Asia, the Middle East, the Mediterranean rim countries, Eastern Australia (i.e. the Murray Darling basin), Western Latin America, large parts of the Western United States and Northern Mexico. Overall, river basins in these regions are at greater risk of seasonal or inter-annual variations in water flow. For a detailed description of the methodology, background work and findings: http://www.usf.uni-kassel.de/cesr/index.php?option=com_content&task=view&id=57&Itemid=86

Source: Center for Environmental Systems Research, University of Kassel (Generated in December 2014 using WaterGAP3 model). Alcamo, J., Flörke, M. and Marker, M. 2007. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal, 52(2): 247-275.

Groundwater development stress Source: Unesco 2017

Source: IGRAC (2014).

IGRAC (International Groundwater Resources Assessment Centre). 2014. Information System. Global Overview application. Delft, the Netherlands, IGRAC. http://ggmn.e-id.nl/ggmn/GlobalOverview.html (Accessed December 2014). © IGRAC 2014.

Environmental stress due to flow regime alteration Source: WWAP, 2015

Number of people living in water-stressed rivers Source: WWAP, 2015

Changes in Europe annual precipitation

European Environmental Agency 2/2009 Report

The impact of water resources scarcity have increased the profile of water reuse as one of the solution SOGESID

Wastewater reuse – why? (1/2)

- > Alleviate water scarcity
- Reduce demand on potable water supplies and high quality sources
- Supplement conventional sources
- > A valuable buffer against drought and water shortage especially for irrigation and industry
- > Improve operational efficiency; reduce energy costs
- Reduce nutrient discharge to the environment
- Reduce water stress on specific sectors

Wastewater reuse – why? (2/2)

- ➢ 40% of world population is living in water stressed areas.
- At least 10% of the world population consumes wastewater irrigated food. Direct and unintentional use is increasing worldwide.
- Multiple benefits minimising contaminant flow and conserving water resources

Views on wastewater reuse

Wastewater reuse is already important in small communities in many countries, particularly to support agriculture

Wastewater reuse is technically and practically feasible

It should be an integral part of water management strategies now and for the future.

Water Reuse: a Global Trend towards Sustained **Growth in All Continents**

Jiminez, Blanca, and Takashi Asano, eds. 2008. Water Reuse: An International Survey of current practice, issues and needs. London, United Kingdom: IWA Publishing. The State of Water Reuse

Recoro

Water Reuse: a Global Trend towards Sustained Growth in All Continents

Kel pro

Water scarcity and water reuse

Source: Bixio et al., 2008, map EEA, 2005

Framing Wastewater from a resource perspective

Resources in excreta and wastewater	Resource management options	Technical system options	Multiple potential benefits
Water Nutrients Energy content Organic matter Other	 Water reuse and recycling Potable and non-potable water / industrial use / recharge of water bodies Combined water and nutrient reuse Agricultural irrigation / forestry irrigation / aquaculture Nutrient reuse or combined organic matter/nutrient reuse Solid and liquid fertilizer and soil conditioner for agriculture and forestry Energy generation Biogas generation / incineration / Biomas production Ecosystem services i.e. constructed wetland Other outputs i.e. protein feed for livestock / building material	Centralized vs decentralized Waterborne vs non-waterborne excreta management Separate greywater management Sludge management Off-site vs on-site treatment Wastewater treatment Excreta and sludge treatment	Health protection Environmental protection Livelihoods Gender equity Water security Food security Energy security Climate mitigation and adaptation

Source: Andersson et al. (2016, Fig. 3.1, p. 27).

Wastewater components and potential hazards

Wastewater: potential hazards

Source: WHO, 2016- Sanitation safety planning manual for safe use and disposal of wastewater, greywater and excreta

	WASTE COMPONENTS									
	POTENTIAL BIOLOGICAL HAZARDS			POTENTIAL CHEMICAL Hazards		POTENTIAL PHYSICAL HAZARDS				
	Viruses	Bacteria	Protozoa	Helminths	Vector- related diseases	Toxic chemicals	Heavy metals	Sharp objects	Inorganic material	Malodours
Liquid waste fractions										
Diluted excreta (human or animal)		٥	٥							٥
Urine (human or animal)	٥	٥	٥	٥						٥
Domestic waste water	٥	٥	٥	٥	٥			٥	٥	٥
Stormwater	٥	٥	٥	٥	٥	٥	۵	٥		
River water	٥	٥	٥	۵	٥	٥	۵			
Industrial wastewater (Note 1)						٥	۵			

Health risks (1/2)

Biological risk (patogens) ≻Viruses

include highly contagious enteroviruses (polio, echo, coxsackie), hepatitis A and E, and a range of viruses causing diarrhea and gastoenteritis. Due to their small size, they are able to pass filtration devices and can be detected in drinking water, even after disinfection

►Bacteria

including harmless and pathogenic coliforms, salmonella, shigella, and enterococci.

They cause classical waterborne diseases like typhoid, dysentery, cholera and other gastroinintestinal illnesses

Health risks (2/2)

Biological risk (patogens)

- Protozoan pathogens single-celled eukaryotic parasites,
 - which survive as cysts outside their host, the most common being Giardia lamblia and Cryptosporidium parvum. inactivated using UVradiation but are fairly resistant to Chlorination

>Helmints

Chemical risk

- heavy metals
- > organic compounds
- > emerging pollutants (i.e pharmaceuticals)

RECOMMENDED MICROBIOLOGICAL QUALITY GUIDELINES FOR WASTEWATER USE IN AGRICULTURE^{a.} Source, WHO 1989

Category	Reuse condition	Exposed group	Intestinal nematodes ^b (arithmetic mean no. of eggs per litre) ^c	Faecal coliforms (geometric mean no. per 100 ml ^c)	Wastewater treatment expected to achieve the required microbiological quality
A	Irrigation of crops likely to be eaten uncooked, sports fields, public parksd ^d	Workers, consumers, public	≤1	≤1000 ^d	A series of stabilization ponds designed to achieve the microbiological quality indicated, or equivalent treatment
В	Irrigation of cereal crops, industrial crops, fodder crops, pasture and trees ^e	Workers	≤1	No standard recommend ed	Retention in stabilization ponds for 8-10 days or equivalent helminth and faecal coliform removal
С	Localized irrigation of crops in category B if exposure of workers and the public does not occur	None	Not applicable	Not applicable	Pretreatment as required by the irrigation technology, but not less than primary sedimentation

a In specific cases, local epidemiological, socio-cultural and environmental factors should be taken into account, and the guidelines modified accordingly.

b Ascaris and Trichuris species and hookworms.

c During the irrigation period.

d A more stringent guideline (<200 faecal coliforms per 100 ml) is appropriate for public lawns, such as hotel lawns, with which the public may come into direct contact.

e In the case of fruit trees, irrigation should cease two weeks before fruit is picked, and no fruit should be picked off the ground. Sprinkler irrigation should not be used.

Environmental risks

Water

- > nutrients (eutrophication)
- heavy metals
- > organic compounds
- > emerging pollutants (i.e pharmaceuticals, endocrine disruptors)

Soil (irrigation, landscape uses)

- salinity (sodium absorption ratio index)
- heavy metals
- > organic compounds
- emerging pollutants
- > crop toxicity (yield reduction) and crop contamination

GUIDELINES FOR INTERPRETATION OF WASTEWATER QUALITY FOR IRRIGATION Source: FAO 1985

Potential irrigation	Units	Degree of restriction on use			
problem		None	Slight to moderate	Severe	
Salinity					
Ecw ¹	dS/m	< 0.7	0.7 - 3.0	> 3.0	
or					
TDS	mg/l	< 450	450 - 2000	> 2000	
Infiltration					
SAR and					
ECw					
0 - 3		> 0.7	0.7 - 0.2	< 0.2	
3-6		> 1.2	1.2 - 0.3	< 0.3	
6-12		> 1.9	1.9 - 0.5	< 0.5	
12-20		> 2.9	2.9 - 1.3	< 1.3	
20-40		> 5.0	5.0 - 2.9	< 2.9	

GUIDELINES FOR INTERPRETATION OF WASTEWATER QUALITY FOR IRRIGATION

Source: FAO 1985

Potential irrigation	Units	Degree of restriction on use			
problem	Unite	None	Slight to moderate	Severe	
Specific ion toxicity	1	1			
Sodium (Na)					
Surface irrigation	SAR	< 3	3-9	> 9	
Sprinkler irrigation	me/l	< 3	> 3		
Chloride (CI)			· · ·		
Surface irrigation	me/l	< 4	4-10	> 10	
Sprinkler irrigation	me/l	< 3	> 3		
Boron (B)	mg/l	< 0.7	0.7 - 3.0	> 3.0	
Miscellaneous effects		1			
Nitrogen (NO3-N) ³	mg/l	< 5	5-30	> 30	
Bicarbonate (HCO3)	me/l	< 1.5	1.5 - 8.5	> 8.5	
pH		Normal r	ange 6.5-8	SOGE	

Threshold levels of trace elements for crop production

Source: FAO 1985

Element		Recommend	Remarks		
		concentratio			
		n (mg/l)			
AI	(aluminium)	5.00	Can cause non-productivity in acid soils (pH < 5.5), but more alkaline soils at pH > 7.0 will precipitate the ion and eliminate any toxicity.		
As	(arsenic)	0.10	Toxicity to plants varies widely, ranging from 12 mg/l for Sudan grass to less than 0.05 mg/l for rice.		
Be	(beryllium)	0.10	Toxicity to plants varies widely, ranging from 5 mg/l for kale to 0.5 mg/l for bush beans.		
Cd	(cadmium)	0.01	Toxic to beans, beets and turnips at concentrations as low as 0.1 mg/l in nutrient solutions. Conservative limits recommended due to its potential for accumulation in plants and soils to concentrations that may be harmful to humans.		
Со	(cobalt)	0.05	Toxic to tomato plants at 0.1 mg/l in nutrient solution. Tends to be inactivated by neutral and alkaline soils.		
Cr	(chromium)	0.10	Not generally recognized as an essential growth element. Conservative limits recommended due to lack of knowledge on its toxicity to plants.		
Cu	(copper)	0.20	Toxic to a number of plants at 0.1 to 1.0 mg/l in nutrient solutions.		
F	(fluoride)	1.00	Inactivated by neutral and alkaline soils.		
Fe	(iron)	5.00	Not toxic to plants in aerated soils, but can contribute to soil acidification and loss of availability of essential phosphorus and molybdenum.		

Threshold levels of trace elements for crop production Source: FAO 1985

Element		Recommended	Remarks		
		maximum			
		concentration			
		(mg/l)			
Li	(lithium)	2.05	Tolerated by most crops up to 5 mg/l; mobile in soil. Toxic to citrus at low concentrations (<0.075 mg/l). Acts similarly to boron.		
Mn	(manganese)	0.20	Toxic to a number of crops at a few-tenths to a few mg/l, but usually only in acid soils.		
Мо	(molybdenu m)	0.01	Not toxic to plants at normal concentrations in soil and water. Can be toxic to livestock if forage is grown in soils with high concentrations of available molybdenum.		
Ni	(nickel)	0.20	Toxic to a number of plants at 0.5 mg/l to 1.0 mg/l; reduced to xicity at neutral or alkaline pH.		
Pd	(lead)	5.00	Can inhibit plant cell growth at very high concentrations.		
Se	(selenium)	0.02	Toxic to plants at concentrations as low as 0.025 mg/l and toxic to livestock if forage is grown in soils with relatively high levels of added selenium. As essential element to animals but in very low concentrations.		
Sn	(tin)				
Ti	(titanium)	-	Effectively excluded by plants; specific tolerance unknown.		
W	(tungsten)				
С	(vanadium)	0.10	Toxic to many plants at relatively low concentrations.		
Zn	(zinc)	2.00	Toxic to many plants at widely varying concentrations; reduced toxicity at pH > 6.0 and in fine textured or organic soils.		

Regulation on water reuse in Italy

Ministerial Decree n. 185/2003 Regolamento recante norme tecniche per il riutilizzo delle acque reflue

Official Journal n. 169 of 23 July 2003

Water scarcity and drought in Italy

In Southern Italy water scarcity is an issue in several areas (due to climatic conditions, infrastructural deficit, management problems)
 i.e.: Calabria, Campania, Basilicata, Puglia, Sicilia

In Northern Italy the extreme events are increasing (i.e., Drought in 2003)...!

D.lgs. 152/99 Testo Unico sulle Acque

Water ecosystem quality

To meet RBMP objectives on 2015 (chemical and ecological good/high status for all water bodies)

→ Conservation, saving, recycling, interconnection, flexibility, optimization

Review of current water uses

Reuse of waste water An Italian challenge for unconventional water supply

National food market competitiveness

EU consumers: Food quality and safety are fundamental Env. sustainability is a topic

<u>Farmers</u>: concerns in reusing treated wastewater when other sources are available

→ Irrigation water quality standard are currently not issued at EU27 level

Regulation on water reuse in Italy

Ministerial Decree n. 185/2003 Regolamento recante norme tecniche per il riutilizzo delle acque reflue

Official Journal n. 169 of 23 July 2003

Regulatory Framework Legislative Decree 3 April 2006 n. 152 (implementing the Water Framework Directive 2000/60/CE)

art. 99 Riutilizzo dell'acqua (Water reuse)

1.Il Ministro dell'ambiente e della tutela del territorio con proprio decreto, sentiti i Ministri delle politiche agricole e forestali, della salute e delle attività produttive, detta le norme tecniche per il riutilizzo delle acque reflue

2.Le regioni, nel rispetto dei principi della legislazione statale, e sentita l'Autorità di vigilanza sulle risorse idriche e sui rifiuti, adottano norme e misure volte a favorire il riciclo dell'acqua e il riutilizzo delle acque reflue depurate

Treated Waste Water Reuse Regulation Ministerial Decree 185/2003 (1)

Italian regulation on water reuse

Means for achieving environment and health protection

 Strict quality standards for wastewater reuse for microbiological and chemical parameters
 Identified wastewater uses
 Obligations on water monitoring
 Provisions on controls

Provisions on permits for the specific activity of water reuse in the main regulation

Ministerial Decree 185/2003 (2) Types of Uses Allowed for TWW reuse

Ministerial Decree 185/2003 Definitions

Treatment Plants

Plant treating waste water In compliance with limit values

infrastructure

Separate pipelines network (and management), clearly identified

Standards for water reuse(1/3)

Ministerial Decree 185/2003

Parametri	Unità di misura	Valore limite
pH		6-9.5
SAR		10
Materiali grossolani		Assenti
Solidi sospesi totali	mg/L	10
BOD5	mg O2/L	20
COD	mg O2/L	100
Fosforo totale	mg P/L	2
Azoto totale	mg N/L	15
Azoto ammoniacale	mg NH4/L	2
Conducibilità elettrica	μS/cm	3000

<u>Notes</u>

- Limit Values at the output of the treatment plant referred to annual average (for irrigation referred to single irrigation practice)
- In case of irrigation use: P=10mg/l; n=35mg/l. Ntot load contribute to the total Nitrate permitted amount in NVZs.
- Guidance values for pH, N ammonium, SAR, Al, Fe, Mn, chlorides, sulphites: Regions may define different values, not exceeding limit values for wastewater discharge

Standards for water reuse(2/3)

Ministerial Decree 185/2003

Alluminio	mg/L	1	Zinco	mg/L	0,5
Arsenico	mg/L	0,02	Cianuri totali (come CN)	mg/L	0.05
Bario	mg/L	10			
Berillio	mg/L	0,1	Solfuri	mg H2S/L	0,5
Boro	mg/L	1,0	Solfiti	mg SO3/L	0,5
Cadmio	mg/L	0,005	Solfati	mg SO/L	500
Cobalto	mg/L	0,05	Cloro attivo	mg/L	0,2
Cromo totale	mg/L	0,1	Clonuri	mg C1/I	250
Cromo VI	mg/L	0,005	Clothan	ing carb	2.00
Ferro	mg/L	2	Fluoruri	mg F/L	1,5
Manganese	mg/L	0,2	Grassi e oli animali vegetali	mg/L	10
Mercurio	mg/L	0,001	Oli minerali	mg/L	0,05
Nichel	mg/L	0,2	Fenoli totali	mg/L	0,1
Piombo	mg/L	0,1	Pentaclorofenolo	mg/L	0,003
Rame	mg/L	1	Aldeidi totali	mg/L	0,5
Selenio	mg/L	0,01	Tetraclorostilene	mg/I	0.01
Stagno	mg/L	3	Tetractoroeurene		0,01
Tallio	mg/L	0,001	Solventi clorurati totali	mg/L	0,04
Vanadio	mg/L	0,1	Trialometani	mg/L	0,03

Standards for water reuse(3/3)

Ministerial Decree 185/2003

Solventi organici aromatici totali	mg/L	0,01
Benzene	mg/L	0,001
Benzopirene	mg/L	0,00001
Solventi organici azotati totali	mg/L	0,01
Tensioattivi totali	mg/L	0,5
Pesticidi clorurati	mg/L	0,0001
Pesticidi fosforiti	mg/L	0,0001
Altri pesticidi totali	mg/L	0,05
Escherichia coli	UFC/100ml	10 (80%dei campioni). 100 valore massimo puntuale
Salmonella		Assente

<u>Notes</u>

• In case of phytoremediation plan Escherichia coli Std=50UFC/100ml (80% of samples) and 200UFC/100ml (max single value)

Control and monitoring of Wastewater treatment plant

A Control & Monitoring programme is set out in the discharge permit

Monitoring for assessment of compliance with limit values established for water reuse

(Competent authorities and wastewater treatment plant)

Monitoring of reuse activities

Water monitoring and monitoring of environmental and agronomic effects

(manager of the network for distribution of treated wastewater)

• Monitoring of effects on human health

Decreto n. 185/2003

Control and monitoring system

Treatment Plant Control

The wastewater plant is subject to supervision by the competent authority. The control upon order of the competent authority and on the basis of a monitoring program may be performed by the plant manager

Monitoring

The water supplier performs the monitoring plan to assess chemical and microbiological quality of the treated wastewater and to assess environmental, agronomic and soil effects. The authorities responsible for health issues assess possible effects related to the use

of treated waste water.

Planning framework in Italy National Irrigation Plan

Promoted by Ministry of Agriculture to finance irrigation facilities including treated waste water distribution systems

Waste Water Reuse

Regional examples

Sardegna (1/3)

34 Treatment Plants suitable for reuse

 \rightarrow 1.5 10 ⁸ m³/year \rightarrow 1.14 10 ⁸ m³/y already available

i.e. Treatment Plant: Cagliari Is Arenas (557.000 PE), Cagliari Macchiareddu (297.000 PE), Serramanna (200.000 PE) e Sassari (180.000 PE)

Gennargentu National park in winter (lake of Gusana) [WIKIPEDIA]

Sardegna (2/3) EXAMPLES

Villasimius Municipality Volume: 1.075 10³ m³/year of treated wastewater are reused for irrigation (on crops and green areas). Note: local regulation for reuse

Alghero Treatment Plant Volume: 2,2 10⁶ m³ since October 2011 of treated waste water are reused for irrigation

Agreement signed between the treatment plant manager and the local Irrigation Authority

WW reuse Management Plan

Site Specific: for each treatment plant (even group of plants) Effective involvement of all the stakeholders (waste water management and end users) by creating a Consortium Stakeholders and local Authorities consultation

Contents: stakeholders involved; end users; water quality and control protocol; volumes of TWW; monitoring program for soil, agriculture and environment; financial plan; cost - effectiveness analysis; contingency plans.

EMILIA_ROMAGNA REGION (1/2)

Overall water withdrawal Agriculture: 1.385*10⁶m³/years (64%) Civil: 489*10⁶m³/years (23%) Industry: **278*10⁶m³/years (13%)**

Treatment Plants 100% agglomerations treated at least with a secondary treatment

Codigoro, Po di Volano, WIKIPEDIAL 24 WWTP for reusing of treated wastewater

→ 560.000 m³/d and 2.000.000 PE (Regional Water Protection Plan, 2006)

http://www.arpa.emr.it/documenti/arparivista/pdf2008n3/Berr%C3%A8AR3

EMILIA ROMAGNA REGION (2/2)

•Urbanisation index is very high in the plains
•22.000 km irrigation and drainage canals
•220.000 hectars irrigated by collettive infrastrutture
•Po river water is the main water source
•Most of the WWTP discharge into water bodies already used for irrigation supply

An example of implementation of Wastewater reuse ReQpro demonstration Project

Source: final Conference of the project (cofunded LIFE project)

http://reqpro.crpa.it/nqcontent.cfm?a_id=15397&tt=t_law_m arket_www

EMILIA_ROMAGNA REGION (1/2)

Overall water withdrawal Agriculture: 1.385*106m3/years (64%) Civil: 489*106m3/years (23%) Industry: **278*106m3/years (13%)**

Treatment Plants 100% agglomerations treated at leas with a secondary treatment

Codigoro, Po di Volan 24 WWTP for reusing of treated wastewater

→ 560.000 m3/d and 2.000.000 PE

(Regional Water Protection Plan, 2006)

http://www.arpa.emr.it/documenti/arparivista/pdf2008n3/Berr%C3%A8AR3

Emilia-Romagna – wastewater reuse in the regional Water Protection Plan

- The regional Water Protection Plan identifies wastewater reuse as a priority measure for quantitative and qualitative protection of water resources
- The regional Water Protection Plan identifies the priority list of wastewater treatment plants for reuse (including Mancasale WWTP, in Reggio Emilia province)
- Article 71 of the Norms established by the regional Water Protection Plan sets out the option to establish Programme agreements among involved stakeholders in order to support and promote water reuse

Wastewater treatment and reuse in Mancasale treatment plant

Pilot plant to test the technical options for finishing treatment

Carried out in 2009

Objective: identification of the most suitable solution in the specific conditions (technical and economic features were evaluated on a pilot scale)

Technical solution: multi-layer rapid filtration followed by H2O2 /UV treatment

Post treatment installation

June 2014

February 2015

December 2014

February 2015

July 2015

Wastewater reuse: irrigation

The irrigation catchment

- Approximately **2000 hectares** (1 hectar 10.000 square meters)
- Crops:
- •Grassland and Alfa alfa
- •Maize
- •Sugar beet
- •Sorgum
- •Tomatoes
- •Melon
- •Vineyard

Procedures for the start up

- Programme agreement among all concerned Parties involved in wastewater reuse activities Regional Deliberation n. 966 il 20 July 2015.
 - Signataires: Regione Emilia-Romagna, Provincia di Reggio Emilia, ATERSIR, IREN Emilia e Consorzio di Bonifica dell'Emilia Centrale.
- The programme agreement set out the committments of the Parties, the parameters for controls (sampling and analysis) and the frequency of sampling and analysis and the procedures for management of the possible critical issues

Parameter for control in treated wastewater(n. 60)

Aldeidi (mg/l)	Cobalto (mg/l)	Mercurio (mg/l)	Selenio (mg/l)
Alluminio (mg/l)	Conducibilità a 25°C (µS/cm)	Molibdeno (mg/l)	Sodio (mg/l)
Arsenico (mg/l)	Cromo esavalente (mg/l)	Nichel (mg/l)	Solfati (mg/l)
Azoto ammoniacale (mg/l)	Cromo (mg/l)	Pentaclorofenolo (mg/l)	Solfiti (mg/l)
Azoto totale (mg/l)	Escherichia coli (MPN/100 ml)	Pesticidi azotati (mg/l)	Solventi clorurati (mg/l)
Bario (mg/l)	Fenoli (mg/l)	Pesticidi fosforati (mg/l)	Solventi organici aromatici (mg/l)
Benzene (mg/l)	Ferro (mg/l)	Pesticidi organoclorurati (mg/l)	Solventi organici azotati (mg/l)
Benzo(a)pirene (mg/l)	Fluoruri (mg/l)	pH (Unità pH)	Stagno (mg/l)
Berillio (mg/l)	Fosforo totale (mg/l)	Piombo (mg/l)	Tallio (mg/l)
Bicarbonati (mg/l)	Grassi e olii animali e vegetali (mg/l)	Portata (m3/gg)	Tensioattivi totali (mg/l)
Boro (mg/l)	Indice SAR su estratto acquoso (calc.)	Potassio (mg/l)	Tetracloroetilene - Tricloroetilene (mg/l)
Cadmio (mg/l)	Litio (mg/l)	Rame (mg/l)	Vanadio (mg/l)
Calcio (mg/l)	Magnesio (mg/l)	Ricerca di salmonella in 100 ml	Zinco (mg/l)
Cianuri (mg/l)	Manganese (mg/l)	Richiesta biochimica di O ₂ (BOD) (mg/l)	Solfuri (mg/l)
Cloruri (mg/l)	Materiali grossolani	Richiesta chimica di O ₂ (COD) (mg/l)	Solidi sospesi totali (SST) (mg/l)

PARAMETRI	U.M.	VALORE MEDIO INGRESSO	VALORE MEDIO USCITA	Limite Accordo di Programma
pН	u. pH	7,7	7,8	6-9,5
SST	mg/l	3	0,8	35
BOD	mg/l	2,4	1,5	20
COD	mg/l	22,7	20,6	100
NH ₄	mg/l	0,77	0,42	5
N tot	mg/l	6,3	6,2	35
Р	mg/l	0,95	0,91	10

Monitoring period 29 March – 19 October 2016, n. 55 samples

PARAMETRI	U.M.	VALORE MEDIO	VALORE MINIMO	VALORE MASSIMO	Limite Accordo di Programma
Tensioattivi IN	mg/l	0,32	0,1	1,5	-
Tensioattivi OUT	mg/l	0,31	0,1	0,9	1,0
Oli minerali IN	mg/l	<0,01	<0,01	0,06	-
Oli minerali OUT	mg/l	<0,01	<0,01	<0,01	0,05

Monitoring period 29 March – 19 October 2016, n. 55 samples

PARAMETRI	U.M.	VALORE MEDIO	VALORE MINIMO	VALORE MASSIMO	Limite Accordo di Programma
E-coli IN	MPN/100 ml	44.167	4.568	240.030	-
E-coli OUT Pistarina	MPN/100 ml	2	0	34	1000

E-coli removal 99,98% Salmonella in 17/55, out: absent

PARAMETRI	U.M.	VALORE MEDIO INGRESSO	VALORE MEDIO USCITA	Limite Accordo di Programma
Conducibilità	uS/cm	1471	1476	3000
Boro	mg/l	0,22	0,21	1,0
Cloruri	mg/l	205	219	500
Bicarbonati	mg/l	402,8	401,5	500
Solfati	mg/l	95,8	95,3	500
Indice di SAR	-	3,22	3,26	10
Sodio	mg/l	146,3	150,3	200
Calcio	mg/l	118,4	118,4	-
Magnesio	mg/l	21,9	21,7	-

Monitoring period 29 March – 19 October 2016, n. 55 samples

Sand filtration followed by UV/H₂O₂ treatment performed the required reduction of suspended solids and microbial loading (i.e. Salmonella, Total coliforms, *Escherichia coli*)

Also pollutants such as mineral oils and detergents are removed

Overall it was concluded concluded that the finishing treatment showed good applicability in full scale

Wastewater reuse, optimization of use and treaceability

Achieved objectives:

1. Mapping of individual parcels e rand collection of information concerning crops, irrigation methods, landowner, derivation channel for irrigation

2. Identification of channels used for the distribution of treated wastewater

Wastewater reuse, optimization of use and treaceability

Treaceability. Implementation of a communication system for irrigation water management ensuring:

Identification in real time of the irrigation water sources delivered into the irrigation catchment;

Registration of the pertinent data for individual water distribution to each plot/parcel (date and time of irrigation, volume applied, type of water (surface water and/or trated wastewater) and release to the farmer in real time of a "receipt of irrigation" including all the recorded available data

Wastewater reuse in agricolture

Wastewater reuse in agriculture

Wastewater reuse

35.00

12/07/2016

15/07/2016

5.2500

DATA RICHIESTA IRRIGUA: 13/07/2016			DATA PRE	NOTAZIO	2/07/2016				
APPEZZAMENTO		DOTAZIONE					IRRIG	AZIONI EFFETT	UATE
CODICE	16889	Portata	min	max reg.	IrriNET	eff.			
SUPERFICIE (ha)	5,2500	(1/5)	(016)	(016)		(010)	Non ci so	ono irrigazioni eff	ettuate
COLTURA	PRATO STABILE	35,00 consorziale	33	83	N.P.	0			
		20	58	<mark>1</mark> 46	N.P.	0			
PRESA		25	47	117	N.P.	0			
D0770		30	39	97	N.P.	0			
PUZZU		40	29	73	N.P.	0			
IRRIGAZIONE	Scorrimento	50	23	58	N.P.	0			
		60	19	49	N.P.	0			
CANALE	Canale-ARGINE	70	17	42	N.P.	0			
CANALE		80	15	36	N.P.	0			
SECONDARIO	A7010-Cavo-PISTARINA	90	13	32	N.P.	0			
AREA IRRIGUA	DM-DEPURATORE	100	12	29	N.P.	0			
	MANCASALE	110	<mark>1</mark> 1	27	N.P.	0			
SOTTOZONA	42 - Dallara-Palladini								
Apertura Ch	niusura Portata Super	rficie(ha) Du	rata Mo	erogati	In. Produ	Ittività	In. Momento	In. Servizio	In. Rivalità

10458,00

1,2

1

83:00

1

1

Monitoring of environmental impact

In the period 2014-2015 ex-ante monitoring

In **2016 (Wastewater utilization,** 3.5 million m³ of reused wastewater over 150 days **)** : 10 farms , 23 parcels and 9 crops; Analisys on 40 samples of water, 80 samples of biomass and 75 soil samples

Water, soil and crop analysis

Water: conductivity, Nitrates, total Nitrogen and Phosphorus, Escherichiα coli

Soil (strato superficiale): Nitrogen and Phosphorus, conductivity

Crops (prodotti raccolti): Nitrates, Escherichia coli

Environmental monitoring-Water

0

Diversivo

Cavo

Bresciana Pistarina Argine Sud

Canale

Canale

Argine Nord

Condotto

Canale

Environmental monitoring-Water

Environmental monitoring-Conclusions

Water: no adverse effects on surface waters

Soil and crops: no difference between ex ante situation (2014 and 2015- no application of treated wastewater and 2016 (treatment with irrigation water and treated wastewater)

Socio-economic impact evaluation

Main costs Finishing section of the wastewater treatment(~ 3M €) Operational costs(0,069 €/m³)

Main benefits:

Reduction of energy costs for pumping surface water (50-70% of the overall benefits) Improved surface water quality

Summary of the project results

The project demonstrated the technical and economical applicability of the proposed model represented by the treatment plants and the irrigation catchment and its farms.

The project improved agricultural utilisation of treated wastewater reducing direct discharges into surface water and therefore:

>increased water availavility for irrigation

reduced water withdrawals for irrigation needs from groundwater (high quality water)

>improved surface water status

reduced energy costs for pumping irrigation water

EU level perspectives Wastewater Reuse

EU level perspectives (1) Wastewater Reuse

Objectives

1) Address water scarcity

2) Reduce vulnerability

Reuse:

 Significant alternative water source (lower environmental impact compared to water transfers and desalinisation)
 Limited explotation (lack of common standards, potential limitations to free trade)

Analysis

Support water reuse:

EU level standards for water reuse

EU level perspectives on water reuse (2)

A. Guidance on planning and management of water reuse

Integration in WFD planning and implementation

EU level perspectives (3)

B. EU quality standards for water reuse

Priority uses: agricultural irrigation and aquifer recharge

Comparison of wastewater uses in current Regulations of EU Member State

Intended use of reclaimed water	Cyprus	France	Greece	Italy	Portugal	Spain
Irrigation of private gardens						\checkmark
Supply to sanitary appliances						\checkmark
Landscape irrigation of urban areas (parks, sports grounds and similar)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√
Street cleaning			\checkmark	\checkmark		\checkmark
Soil compaction			\checkmark			
Fire hydrants			\checkmark			\checkmark
Industrial washing of vehicles				\checkmark		\checkmark
Irrigation of crops eaten raw	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Irrigation of crops not eaten raw	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Comparison of microbiological standards standards in EU Member States

Analytical parameters	Cyprus	France	Greece	Italy	Portugal	Spain
Microbiological parameters						
 Escherichia coli (cfu/100mL) 	5-10 ³	250-10 ⁵	5-200	10		0- 10 ⁴
 Fecal coliforms (cfu/100mL) 					100-10 ⁴	
 Total coliforms (cfu/100mL) 			2			
 Fecal enterococci (log reduction) 		2-4				
 Legionella sp. (cfu/L) 						0- 10 ³
- Salmonella sp.				absence		absence
 Sulphate-reducing bacteria (log reduction) 		2-4				
 Helminths eggs (Intestinal nematodes) (eggs/L) 	0				1	0.1
 F-specific bacteriophages (log removal) 		2-4				

Comparison of microbiological standards

WHO guidelines for wastewater reuse

WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater (Third edition, 2006)

Volume 1. Policy and Regulatory
 Aspects
 Volume 2. Wastewater Use in
 Agriculture
 Volume 3. Wastewater and
 Excreta Use in Aquaculture
 Volume 4. Excreta and Greywater
 Use in Agriculture

WHO Guidelines background

- Wastewater use is extensive worldwide, and increasing
- Ten percent of the world's population is thought to consume wastewater irrigated foods
- Twenty million hectares in 50 countries are irrigated with raw or partially treated wastewater
- The use of excreta (faeces, urine) is important worldwide, but the extent has not been quantified
- The use of greywater is growing in both developed and less-developed countries – it is culturally more acceptable in some societies.

WHO Guidelines, policy and regulatory aspects

Vol 1 <u>http://apps.who.int/iris/bitstream/10665/78265/1/9241546824_eng.pdf</u>

Policy formulation, a step by step process
➢ Establishment of a policy dialogue mechanism
➢ Defining objectives
➢ Situation analysis, policy appraisal and needs assessment
➢ Political endorsement, dialogue engagement and product legitimization
➢ Research

Institutional arrangements

The concept of intersectoral collaboration

Mechanisms to promote intersectoral collaboration

WHO Guidelines, lessons learned

- Overly strict standards borrowed from other countries often fail
- Guidelines are not just numbers; they are made up of good practice + microbial water quality standards
- Low-cost effective treatment technologies needed
- Risk reduction strategies necessary (and possible) where wastes receive no or inadequate treatment.

WHO Guidelines

Objective: Maximize the protection of human health and the beneficial use of important resources

Target Audience: Policy makers, people who develop and enforce standards and regulations, environmental and public health scientists, educators, researchers and engineers.

WHO Guidelines general scope

The Guidelines cover:

- intentional use specifically but they may also be relevant to some unintentional uses e.g., irrigation or aquaculture with sewage contaminated surface waters
- Image: municipal or domestic wastes without substantial industrial inputs
- In detailed information only on matters related to health protection – only cursory reference to technical issues on good agriculture or aquaculture practices in text or annexes.

WHO Guidelines on the Safe Use of Wastewater, Excreta and Grey Water

Guidelines provide an integrated preventive management framework for maximizing public health and environmental benefits of waste use.

Health components:

- Define a level of health protection that is expressed as a health-based target for each hazard
- Identify health protection measures which used collectively can achieve the specified health-based target.

Implementation components:

- Establish monitoring and system assessment procedures
- Define institutional and oversight responsibilities.

Require:

- System documentation
- Confirmation by independent surveillance.

87

WHO guidelines Definition of a tolerable risk

- Based on local public health conditions
- Health priorities (hazards, types of diseases and relative importance)
- Capabilities (institutional, economic, social).

WHO guidelines. Definition of a tolerable risk

The desired level of protection can be reached through a combination of management control options such as:

- Wastewater treatment
- Crop restriction
- The method of irrigation
- ➢ Food preparation
 - ➤Washing
 - Disinfection
 - ➢ Peeling
 - ➢Cooking

➢Hygiene practices at the marketplace □

Vaccines and other health sector preventive measures

WHO guidelines Quantitative Microbial Risk Analysis (QMRA)

The amount of pathogens that can be ingested without exceeding a tolerable risk

 As result, limits to the number of microorganisms per L of wastewater that can be used to irrigate a certain type of crop are obtained
 The estimate is based on

- A statistical analysis of the risk of being infected from a single dose (d) of a certain pathogen (P), i.e. an evaluation of P1(d) during several exposures.
- Mathematical models are applied (exponential dose-response and the Bèta-Poisson model) but other models can be used

Definition of the tolerable risk

➤ The purpose is to standardize the acceptable risk caused by different agents in different norms (Drinking water a risk of 10⁻⁵ for cancer while in irrigation a risk of 10⁻³ for diarrhoeas)

>One DALY = One year of healthy life lost, as a measure of community health. The burden of disease, expressed in DALYs, represents the gap between a real community health status and an ideal situation where everyone lives into old age free of disease and disability .

Disability Adjusted Life Years- DALYs

WHO recommendation: ≤ 10⁻⁶ DALYs lost

Compatible with other public health safety standards

- ➢It is below the actual global incidence of diarrhoeal disease which is is estimated at 0.7, i.e. 10-1
- On a per person basis it is equal to losing 31.5 seconds of healthy life in a year.
- > At the community level it signifies a collective loss of one year of healthy life per million people

Sanitation Safety Planning

SSP is a step-by-step health risk based approach for managing monitoring and improving sanitation systems

SSP also assists to implement the 2006 WHO Guidelines for Safe Use of Wastewater, Excreta and Greywater

Thank you

Contacts Liliana Cortellini

I.cortellini@sogesid.it

